The respiratory pathogen Moraxella catarrhalis adheres to epithelial cells by interacting with fibronectin through ubiquitous surface proteins A1 and A2.

نویسندگان

  • Thuan Tong Tan
  • Therése Nordström
  • Arne Forsgren
  • Kristian Riesbeck
چکیده

Moraxella catarrhalis ubiquitous surface protein (Usp) A1 has been reported to bind fibronectin and is involved in adherence. In this study, using M. catarrhalis mutants derived from clinical isolates, we show that both UspA1 and UspA2 bind fibronectin. Recombinant truncated UspA1/A2 proteins, together with smaller fragments spanning the entire molecule, were tested for binding to fibronectin. Both UspA1 and UspA2 bound fibronectin, and the fibronectin-binding domains were located within UspA1(299-452) and UspA2(165-318). These 2 truncated proteins inhibited binding of M. catarrhalis to Chang conjunctival epithelial cells to an extent similar to that by anti-human fibronectin antibodies. Our observations show that both UspA1 and UspA2 are involved in adherence to epithelial cells via cell-associated fibronectin. The biologically active sites within UspA1(299-452) and UspA2(165-318) have therefore been suggested to be potential candidates to be included in a future vaccine against M. catarrhalis.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

MID and UspA1/A2 of the human respiratory pathogen Moraxella catarrhalis, and interactions with the human host as basis for vaccine development.

Moraxella catarrhalis IgD-binding protein MID is a 200 kDa autotransporter protein that exists as a oligomer and is governed at the transcriptional level. The majority of M. catarrhalis clinical isolates expresses MID. Two functional domains have been attributed to MID; MID764-913 functions as an adhesin and promotes the bacteria to attach to epithelial cells, whereas the IgD-binding domain is ...

متن کامل

Review MID and UspA1/A2 of the human respiratory pathogen Moraxella catarrhalis, and interactions with the human host as basis for vaccine development*

Moraxella catarrhalis IgD-binding protein MID is a 200 kDa autotransporter protein that exists as a oligomer and is governed at the transcriptional level. The majority of M. catarrhalis clinical isolates expresses MID. Two functional domains have been attributed to MID; MID764-913 functions as an adhesin and promotes the bacteria to attach to epithelial cells, whereas the IgD-binding domain is ...

متن کامل

Ionic binding of C3 to the human pathogen Moraxella catarrhalis is a unique mechanism for combating innate immunity.

Moraxella catarrhalis ubiquitous surface proteins A1 and A2 (UspA1/A2) interfere with the classical pathway of the complement system by binding C4b-binding protein. In this study we demonstrate that M. catarrhalis UspA1 and A2 noncovalently and in a dose-dependent manner bind both the third component of complement (C3) from EDTA-treated serum and methylamine-treated C3. In contrast, related Mor...

متن کامل

The emerging pathogen Moraxella catarrhalis interacts with complement inhibitor C4b binding protein through ubiquitous surface proteins A1 and A2.

Moraxella catarrhalis ubiquitous surface protein A2 (UspA2) mediates resistance to the bactericidal activity of normal human serum. In this study, an interaction between the complement fluid phase regulator of the classical pathway, C4b binding protein (C4BP), and M. catarrhalis mutants lacking UspA1 and/or UspA2 was analyzed by flow cytometry and a RIA. Two clinical isolates of M. catarrhalis ...

متن کامل

Physiologic cold shock increases adherence of Moraxella catarrhalis to and secretion of interleukin 8 in human upper respiratory tract epithelial cells.

Moraxella catarrhalis, a major nasopharyngeal pathogen of the human respiratory tract, is exposed to rapid and prolonged downshifts of environmental temperature when humans breathe cold air. In the present study, we show that a 26 degrees C cold shock up-regulates the expression of UspA1, a major adhesin and putative virulence factor of M. catarrhalis, by prolonging messenger RNA half-life. Col...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of infectious diseases

دوره 192 6  شماره 

صفحات  -

تاریخ انتشار 2005